196 research outputs found

    Recommender systems fairness evaluation via generalized cross entropy

    Full text link
    Fairness in recommender systems has been considered with respect to sensitive attributes of users (e.g., gender, race) or items (e.g., revenue in a multistakeholder setting). Regardless, the concept has been commonly interpreted as some form of equality – i.e., the degree to which the system is meeting the information needs of all its users in an equal sense. In this paper, we argue that fairness in recommender systems does not necessarily imply equality, but instead it should consider a distribution of resources based on merits and needs.We present a probabilistic framework based ongeneralized cross entropy to evaluate fairness of recommender systems under this perspective, wherewe showthat the proposed framework is flexible and explanatory by allowing to incorporate domain knowledge (through an ideal fair distribution) that can help to understand which item or user aspects a recommendation algorithm is over- or under-representing. Results on two real-world datasets show the merits of the proposed evaluation framework both in terms of user and item fairnessThis work was supported in part by the Center for Intelligent Information Retrieval and in part by project TIN2016-80630-P (MINECO

    Ducho: A Unified Framework for the Extraction of Multimodal Features in Recommendation

    Full text link
    In multimodal-aware recommendation, the extraction of meaningful multimodal features is at the basis of high-quality recommendations. Generally, each recommendation framework implements its multimodal extraction procedures with specific strategies and tools. This is limiting for two reasons: (i) different extraction strategies do not ease the interdependence among multimodal recommendation frameworks; thus, they cannot be efficiently and fairly compared; (ii) given the large plethora of pre-trained deep learning models made available by different open source tools, model designers do not have access to shared interfaces to extract features. Motivated by the outlined aspects, we propose Ducho, a unified framework for the extraction of multimodal features in recommendation. By integrating three widely-adopted deep learning libraries as backends, namely, TensorFlow, PyTorch, and Transformers, we provide a shared interface to extract and process features where each backend's specific methods are abstracted to the end user. Noteworthy, the extraction pipeline is easily configurable with a YAML-based file where the user can specify, for each modality, the list of models (and their specific backends/parameters) to perform the extraction. Finally, to make Ducho accessible to the community, we build a public Docker image equipped with a ready-to-use CUDA environment and propose three demos to test its functionalities for different scenarios and tasks. The GitHub repository and the documentation is accessible at this link: https://github.com/sisinflab/Ducho

    PrOnto: an Ontology Driven Business Process Mining Tool

    Get PDF
    Abstract The main aim of data mining techniques and tools is that of identify and extract, from a set of (big) data, implicit patterns which can describe static or dynamic phenomena. Among these latter business processes are gaining more and more attention due to their crucial role in modern organizations and enterprises. Being able to identify and model processes inside organizations is for sure a key asset to discover their weak and strong points thus helping them in the improvement of their competitiveness. In this paper we describe a prototype system able to discover business processes from an event log and classify them with a suitable level of abstraction with reference to a related business ontology. The identified process, and its corresponding level of abstraction, depends on the knowledge encoded in the reference ontology which is dynamically exploited at runtime. The tool has been validated by considering examples and case studies from the literature on process mining

    On Popularity Bias of Multimodal-aware Recommender Systems: a Modalities-driven Analysis

    Full text link
    Multimodal-aware recommender systems (MRSs) exploit multimodal content (e.g., product images or descriptions) as items' side information to improve recommendation accuracy. While most of such methods rely on factorization models (e.g., MFBPR) as base architecture, it has been shown that MFBPR may be affected by popularity bias, meaning that it inherently tends to boost the recommendation of popular (i.e., short-head) items at the detriment of niche (i.e., long-tail) items from the catalog. Motivated by this assumption, in this work, we provide one of the first analyses on how multimodality in recommendation could further amplify popularity bias. Concretely, we evaluate the performance of four state-of-the-art MRSs algorithms (i.e., VBPR, MMGCN, GRCN, LATTICE) on three datasets from Amazon by assessing, along with recommendation accuracy metrics, performance measures accounting for the diversity of recommended items and the portion of retrieved niche items. To better investigate this aspect, we decide to study the separate influence of each modality (i.e., visual and textual) on popularity bias in different evaluation dimensions. Results, which demonstrate how the single modality may augment the negative effect of popularity bias, shed light on the importance to provide a more rigorous analysis of the performance of such models

    URANUS: Radio Frequency Tracking, Classification and Identification of Unmanned Aircraft Vehicles

    Full text link
    Safety and security issues for Critical Infrastructures are growing as attackers adopt drones as an attack vector flying in sensitive airspaces, such as airports, military bases, city centers, and crowded places. Despite the use of UAVs for logistics, shipping recreation activities, and commercial applications, their usage poses severe concerns to operators due to the violations and the invasions of the restricted airspaces. A cost-effective and real-time framework is needed to detect the presence of drones in such cases. In this contribution, we propose an efficient radio frequency-based detection framework called URANUS. We leverage real-time data provided by the Radio Frequency/Direction Finding system, and radars in order to detect, classify and identify drones (multi-copter and fixed-wings) invading no-drone zones. We adopt a Multilayer Perceptron neural network to identify and classify UAVs in real-time, with 9090% accuracy. For the tracking task, we use a Random Forest model to predict the position of a drone with an MSE ≈0.29\approx0.29, MAE ≈0.04\approx0.04, and R2≈0.93R^2\approx 0.93. Furthermore, coordinate regression is performed using Universal Transverse Mercator coordinates to ensure high accuracy. Our analysis shows that URANUS is an ideal framework for identifying, classifying, and tracking UAVs that most Critical Infrastructure operators can adopt
    • …
    corecore